Refeneces


References:

  1. Bauer, J., Meza, L. R., Schaedler, T. A., Schwaiger, R., Zheng, X., and Valdevit, L., 2017, “Nanolattices: an emerging class of mechanical metamaterials,” Advanced Materials, 29(40), p. 1701850.
  2. Bauer, J., Schroer, A., Schwaiger, R., and Kraft, O., 2016, “Approaching theoretical strength in glassy carbon nanolattices,” Nature materials, 15(4), p. 438.
  3. Zhang, X., Vyatskikh, A., Gao, H., Greer, J. R., and Li, X., 2019, “Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon,” Proceedings of the National Academy of Sciences, 116(14), pp. 6665-6672.
  4. Qin, Z., Jung, G. S., Kang, M. J., and Buehler, M. J., 2017, “The mechanics and design of a lightweight three-dimensional graphene assembly,” Science advances, 3(1), p. e1601536.
  5. Jung, G. S., and Buehler, M. J., 2018, “Multiscale mechanics of triply periodic minimal surfaces of three-dimensional graphene foams,” Nano letters, 18(8), pp. 4845-4853.
  6. Zhang, X., Zhong, L., Mateos, A., Kudo, A., Vyatskikh, A., Gao, H., Greer, J. R., and Li, X., 2019, “Theoretical strength and rubber-like behaviour in micro-sized pyrolytic carbon,” Nature nanotechnology, 14(8), pp. 762-769.
  7. Kashani, H., Ito, Y., Han, J., Liu, P., and Chen, M., 2019, “Extraordinary tensile strength and ductility of scalable nanoporous graphene,” Science advances, 5(2), p. eaat6951.
  8. Hu, M., He, J., Zhao, Z., Strobel, T. A., Hu, W., Yu, D., Sun, H., Liu, L., Li, Z., and Ma, M., 2017, “Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network,” Science advances, 3(6), p. e1603213.
  9. Gao, H., Ji, B., Jäger, I. L., Arzt, E., and Fratzl, P., 2003, “Materials become insensitive to flaws at nanoscale: lessons from nature,” Proceedings of the national Academy of Sciences, 100(10), pp. 5597-5600.
  10. Gao, H., and Chen, S., 2005, “Flaw tolerance in a thin strip under tension,” Journal of Applied Mechanics, 72(5), pp. 732-737.
  11. Gu, X. W., Jafary-Zadeh, M., Chen, D. Z., Wu, Z., Zhang, Y.-W., Srolovitz, D. J., and Greer, J. R., 2014, “Mechanisms of failure in nanoscale metallic glass,” Nano letters, 14(10), pp. 5858-5864.
  12. Allen, M. J., Tung, V. C., and Kaner, R. B., 2009, “Honeycomb carbon: a review of graphene,” Chemical reviews, 110(1), pp. 132-145.
  13. Lee, C., Wei, X., Kysar, J. W., and Hone, J., 2008, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” science, 321(5887), pp. 385-388.
  14. Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P. E., Liu, Z., Gong, Y., Zhang, J., and Zhang, X., 2014, “Fracture toughness of graphene,” Nature communications, 5, p. 3782.
  15. Anderson, T. L., and Anderson, T. L., 2005, Fracture mechanics: fundamentals and applications, CRC press.
  16. Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorensen, A. E., Lian, J., Greer, J. R., Valdevit, L., and Carter, W. B., 2011, “Ultralight metallic microlattices,” Science, 334(6058), pp. 962-965.
  17. Meza, L. R., Das, S., and Greer, J. R., 2014, “Strong, lightweight, and recoverable three-dimensional ceramic nanolattices,” Science, 345(6202), pp. 1322-1326.
  18. Meza, L. R., Zelhofer, A. J., Clarke, N., Mateos, A. J., Kochmann, D. M., and Greer, J. R., 2015, “Resilient 3D hierarchical architected metamaterials,” Proceedings of the National Academy of Sciences, 112(37), pp. 11502-11507.
  19. Salari-Sharif, L., Schaedler, T. A., and Valdevit, L., 2014, “Energy dissipation mechanisms in hollow metallic microlattices,” Journal of Materials Research, 29(16), pp. 1755-1770.
  20. Holmes, D. P., 2019, “Elasticity and Stability of Shape Changing Structures,” Current opinion in colloid & interface science.
  21. Bertoldi, K., Vitelli, V., Christensen, J., and van Hecke, M., 2017, “Flexible mechanical metamaterials,” Nature Reviews Materials, 2(11), p. 17066.
  22. Fargette, A., Neukirch, S., and Antkowiak, A., 2014, “Elastocapillary snapping: Capillarity induces snap-through instabilities in small elastic beams,” Physical review letters, 112(13), p. 137802.
  23. Cedolin, L., 2010, Stability of structures: elastic, inelastic, fracture and damage theories, World Scientific.
  24. Pandey, A., Moulton, D. E., Vella, D., and Holmes, D. P., 2014, “Dynamics of snapping beams and jumping poppers,” EPL (Europhysics Letters), 105(2), p. 24001.
  25. Haghpanah, B., Salari‐Sharif, L., Pourrajab, P., Hopkins, J., and Valdevit, L., 2016, “Multistable shape‐reconfigurable architected materials,” Advanced Materials, 28(36), pp. 7915-7920.
  26. Shan, S., Kang, S. H., Raney, J. R., Wang, P., Fang, L., Candido, F., Lewis, J. A., and Bertoldi, K., 2015, “Multistable architected materials for trapping elastic strain energy,” Advanced Materials, 27(29), pp. 4296-4301.
  27. Restrepo, D., Mankame, N. D., and Zavattieri, P. D., 2015, “Phase transforming cellular materials,” Extreme Mechanics Letters, 4, pp. 52-60.
  28. Rafsanjani, A., Akbarzadeh, A., and Pasini, D., 2015, “Snapping mechanical metamaterials under tension,” Advanced Materials, 27(39), pp. 5931-5935.
  29. Li, T., and Zhang, Z., 2010, “Snap-through instability of graphene on substrates,” Nanoscale research letters, 5(1), p. 169.
  30. Puglisi, G., and Truskinovsky, L., 2000, “Mechanics of a discrete chain with bi-stable elements,” Journal of the Mechanics and Physics of Solids, 48(1), pp. 1-27.
  31. Puglisi, G., and Truskinovsky, L., 2002, “A mechanism of transformational plasticity,” Continuum Mechanics and Thermodynamics, 14(5), pp. 437-457.
  32. Puglisi, G., and Truskinovsky, L., 2002, “Rate independent hysteresis in a bi-stable chain,” Journal of the Mechanics and Physics of Solids, 50(2), pp. 165-187.
  33. Puglisi, G., and Truskinovsky, L., 2005, “Thermodynamics of rate-independent plasticity,” Journal of the Mechanics and Physics of Solids, 53(3), pp. 655-679.
  34. Williams, P. M., Fowler, S. B., Best, R. B., Toca-Herrera, J. L., Scott, K. A., Steward, A., and Clarke, J., 2003, “Hidden complexity in the mechanical properties of titin,” Nature, 422(6930), p. 446.
  35. Oberhauser, A. F., Hansma, P. K., Carrion-Vazquez, M., and Fernandez, J. M., 2001, “Stepwise unfolding of titin under force-clamp atomic force microscopy,” Proceedings of the National Academy of Sciences, 98(2), pp. 468-472.
  36. Bhattacharya, K., 2003, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect, Oxford University Press.
  37. Gandhi, M. V., and Thompson, B., 1992, Smart materials and structures, Springer Science & Business Media.
  38. Calladine, C. R., 1989, Theory of shell structures, Cambridge University Press.
  39. Holmes, D. P., and Crosby, A. J., 2007, “Snapping surfaces,” Advanced Materials, 19(21), pp. 3589-3593.
  40. Tavakol, B., Bozlar, M., Punckt, C., Froehlicher, G., Stone, H. A., Aksay, I. A., and Holmes, D. P., 2014, “Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps,” Soft matter, 10(27), pp. 4789-4794.
  41. Taffetani, M., Jiang, X., Holmes, D. P., and Vella, D., 2018, “Static bistability of spherical caps,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2213), p. 20170910.
  42. Panter, J. R., Chen, J., Zhang, T., and Kusumaatmaja, H., 2019, “Harnessing energy landscape exploration to control the buckling of cylindrical shells,” Communications physics.
  43. Friedman, J. B., 1951, “Flexible drinking straw,” Google Patents.
  44. Harp, H. J., Leible, W. T., and Mccort, W. M., 1968, “Flexible drinking tube,” Google Patents.
  45. Bende, N. P., Yu, T., Corbin, N. A., Dias, M. A., Santangelo, C. D., Hanna, J. A., and Hayward, R. C., 2018, “Overcurvature induced multistability of linked conical frusta: how a ‘bendy straw’holds its shape,” Soft matter, 14(42), pp. 8636-8642.
  46. Ni, B., Zhang, T., Li, J., Li, X., and Gao, H., 2019, “Topological design of graphene,” Handbook of Graphene: Physics, Chemistry, and Biology, p. 1.
  47. Zhang, T., Li, X., and Gao, H., 2014, “Defects controlled wrinkling and topological design in graphene,” Journal of the Mechanics and Physics of Solids, 67, pp. 2-13.
  48. Zhang, T., Li, X., and Gao, H., 2014, “Designing graphene structures with controlled distributions of topological defects: A case study of toughness enhancement in graphene ruga,” Extreme Mechanics Letters, 1, pp. 3-8.
  49. Li, J., Ni, B., Zhang, T., and Gao, H., 2018, “Phase field crystal modeling of grain boundary structures and growth in polycrystalline graphene,” Journal of the Mechanics and Physics of Solids, 120, pp. 36-48.
  50. Elder, K. R., Provatas, N., Berry, J., Stefanovic, P., and Grant, M., 2007, “Phase-field crystal modeling and classical density functional theory of freezing,” Physical Review B, 75(6), p. 064107.
  51. Seymour, M., and Provatas, N., 2016, “Structural phase field crystal approach for modeling graphene and other two-dimensional structures,” Physical Review B, 93(3), p. 035447.
  52. Hoover, W. G., 1985, “Canonical dynamics: Equilibrium phase-space distributions,” Physical review A, 31(3), p. 1695.
  53. Yazyev, O. V., and Louie, S. G., 2010, “Topological defects in graphene: Dislocations and grain boundaries,” Physical Review B, 81(19), p. 195420.
  54. Filleter, T., McChesney, J. L., Bostwick, A., Rotenberg, E., Emtsev, K. V., Seyller, T., Horn, K., and Bennewitz, R., 2009, “Friction and dissipation in epitaxial graphene films,” Physical review letters, 102(8), p. 086102.
  55. Rogers, R. C., and Truskinovsky, L., 1997, “Discretization and hysteresis,” Physica B: Condensed Matter, 233(4), pp. 370-375.
  56. Benichou, I., and Givli, S., 2011, “The hidden ingenuity in titin structure,” Applied Physics Letters, 98(9), p. 091904.
  57. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E., 1997, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” science, 276(5315), pp. 1109-1112.
  58. Fraternali, F., Blesgen, T., Amendola, A., and Daraio, C., 2011, “Multiscale mass-spring models of carbon nanotube foams,” Journal of the Mechanics and Physics of Solids, 59(1), pp. 89-102.
  59. Benichou, I., and Givli, S., 2013, “Structures undergoing discrete phase transformation,” Journal of the Mechanics and Physics of Solids, 61(1), pp. 94-113.
  60. Wei, Y., Wang, B., Wu, J., Yang, R., and Dunn, M. L., 2012, “Bending rigidity and Gaussian bending stiffness of single-layered graphene,” Nano letters, 13(1), pp. 26-30.
  61. Florijn, B., Coulais, C., and van Hecke, M., 2014, “Programmable mechanical metamaterials,” Physical review letters, 113(17), p. 175503.
  62. Plimpton, S., 1995, “Fast parallel algorithms for short-range molecular dynamics,” Journal of computational physics, 117(1), pp. 1-19.
  63. Stukowski, A., 2009, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modelling and Simulation in Materials Science and Engineering, 18(1), p. 015012.
  64. Stuart, S. J., Tutein, A. B., and Harrison, J. A., 2000, “A reactive potential for hydrocarbons with intermolecular interactions,” The Journal of chemical physics, 112(14), pp. 6472-6486.
  65. Terdalkar, S. S., Huang, S., Yuan, H., Rencis, J. J., Zhu, T., and Zhang, S., 2010, “Nanoscale fracture in graphene,” Chemical Physics Letters, 494(4-6), pp. 218-222.