References:
- Bauer, J., Meza, L. R., Schaedler, T. A., Schwaiger, R., Zheng, X., and Valdevit, L., 2017, “Nanolattices: an emerging class of mechanical metamaterials,” Advanced Materials, 29(40), p. 1701850.
- Bauer, J., Schroer, A., Schwaiger, R., and Kraft, O., 2016, “Approaching theoretical strength in glassy carbon nanolattices,” Nature materials, 15(4), p. 438.
- Zhang, X., Vyatskikh, A., Gao, H., Greer, J. R., and Li, X., 2019, “Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon,” Proceedings of the National Academy of Sciences, 116(14), pp. 6665-6672.
- Qin, Z., Jung, G. S., Kang, M. J., and Buehler, M. J., 2017, “The mechanics and design of a lightweight three-dimensional graphene assembly,” Science advances, 3(1), p. e1601536.
- Jung, G. S., and Buehler, M. J., 2018, “Multiscale mechanics of triply periodic minimal surfaces of three-dimensional graphene foams,” Nano letters, 18(8), pp. 4845-4853.
- Zhang, X., Zhong, L., Mateos, A., Kudo, A., Vyatskikh, A., Gao, H., Greer, J. R., and Li, X., 2019, “Theoretical strength and rubber-like behaviour in micro-sized pyrolytic carbon,” Nature nanotechnology, 14(8), pp. 762-769.
- Kashani, H., Ito, Y., Han, J., Liu, P., and Chen, M., 2019, “Extraordinary tensile strength and ductility of scalable nanoporous graphene,” Science advances, 5(2), p. eaat6951.
- Hu, M., He, J., Zhao, Z., Strobel, T. A., Hu, W., Yu, D., Sun, H., Liu, L., Li, Z., and Ma, M., 2017, “Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network,” Science advances, 3(6), p. e1603213.
- Gao, H., Ji, B., Jäger, I. L., Arzt, E., and Fratzl, P., 2003, “Materials become insensitive to flaws at nanoscale: lessons from nature,” Proceedings of the national Academy of Sciences, 100(10), pp. 5597-5600.
- Gao, H., and Chen, S., 2005, “Flaw tolerance in a thin strip under tension,” Journal of Applied Mechanics, 72(5), pp. 732-737.
- Gu, X. W., Jafary-Zadeh, M., Chen, D. Z., Wu, Z., Zhang, Y.-W., Srolovitz, D. J., and Greer, J. R., 2014, “Mechanisms of failure in nanoscale metallic glass,” Nano letters, 14(10), pp. 5858-5864.
- Allen, M. J., Tung, V. C., and Kaner, R. B., 2009, “Honeycomb carbon: a review of graphene,” Chemical reviews, 110(1), pp. 132-145.
- Lee, C., Wei, X., Kysar, J. W., and Hone, J., 2008, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” science, 321(5887), pp. 385-388.
- Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P. E., Liu, Z., Gong, Y., Zhang, J., and Zhang, X., 2014, “Fracture toughness of graphene,” Nature communications, 5, p. 3782.
- Anderson, T. L., and Anderson, T. L., 2005, Fracture mechanics: fundamentals and applications, CRC press.
- Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorensen, A. E., Lian, J., Greer, J. R., Valdevit, L., and Carter, W. B., 2011, “Ultralight metallic microlattices,” Science, 334(6058), pp. 962-965.
- Meza, L. R., Das, S., and Greer, J. R., 2014, “Strong, lightweight, and recoverable three-dimensional ceramic nanolattices,” Science, 345(6202), pp. 1322-1326.
- Meza, L. R., Zelhofer, A. J., Clarke, N., Mateos, A. J., Kochmann, D. M., and Greer, J. R., 2015, “Resilient 3D hierarchical architected metamaterials,” Proceedings of the National Academy of Sciences, 112(37), pp. 11502-11507.
- Salari-Sharif, L., Schaedler, T. A., and Valdevit, L., 2014, “Energy dissipation mechanisms in hollow metallic microlattices,” Journal of Materials Research, 29(16), pp. 1755-1770.
- Holmes, D. P., 2019, “Elasticity and Stability of Shape Changing Structures,” Current opinion in colloid & interface science.
- Bertoldi, K., Vitelli, V., Christensen, J., and van Hecke, M., 2017, “Flexible mechanical metamaterials,” Nature Reviews Materials, 2(11), p. 17066.
- Fargette, A., Neukirch, S., and Antkowiak, A., 2014, “Elastocapillary snapping: Capillarity induces snap-through instabilities in small elastic beams,” Physical review letters, 112(13), p. 137802.
- Cedolin, L., 2010, Stability of structures: elastic, inelastic, fracture and damage theories, World Scientific.
- Pandey, A., Moulton, D. E., Vella, D., and Holmes, D. P., 2014, “Dynamics of snapping beams and jumping poppers,” EPL (Europhysics Letters), 105(2), p. 24001.
- Haghpanah, B., Salari‐Sharif, L., Pourrajab, P., Hopkins, J., and Valdevit, L., 2016, “Multistable shape‐reconfigurable architected materials,” Advanced Materials, 28(36), pp. 7915-7920.
- Shan, S., Kang, S. H., Raney, J. R., Wang, P., Fang, L., Candido, F., Lewis, J. A., and Bertoldi, K., 2015, “Multistable architected materials for trapping elastic strain energy,” Advanced Materials, 27(29), pp. 4296-4301.
- Restrepo, D., Mankame, N. D., and Zavattieri, P. D., 2015, “Phase transforming cellular materials,” Extreme Mechanics Letters, 4, pp. 52-60.
- Rafsanjani, A., Akbarzadeh, A., and Pasini, D., 2015, “Snapping mechanical metamaterials under tension,” Advanced Materials, 27(39), pp. 5931-5935.
- Li, T., and Zhang, Z., 2010, “Snap-through instability of graphene on substrates,” Nanoscale research letters, 5(1), p. 169.
- Puglisi, G., and Truskinovsky, L., 2000, “Mechanics of a discrete chain with bi-stable elements,” Journal of the Mechanics and Physics of Solids, 48(1), pp. 1-27.
- Puglisi, G., and Truskinovsky, L., 2002, “A mechanism of transformational plasticity,” Continuum Mechanics and Thermodynamics, 14(5), pp. 437-457.
- Puglisi, G., and Truskinovsky, L., 2002, “Rate independent hysteresis in a bi-stable chain,” Journal of the Mechanics and Physics of Solids, 50(2), pp. 165-187.
- Puglisi, G., and Truskinovsky, L., 2005, “Thermodynamics of rate-independent plasticity,” Journal of the Mechanics and Physics of Solids, 53(3), pp. 655-679.
- Williams, P. M., Fowler, S. B., Best, R. B., Toca-Herrera, J. L., Scott, K. A., Steward, A., and Clarke, J., 2003, “Hidden complexity in the mechanical properties of titin,” Nature, 422(6930), p. 446.
- Oberhauser, A. F., Hansma, P. K., Carrion-Vazquez, M., and Fernandez, J. M., 2001, “Stepwise unfolding of titin under force-clamp atomic force microscopy,” Proceedings of the National Academy of Sciences, 98(2), pp. 468-472.
- Bhattacharya, K., 2003, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect, Oxford University Press.
- Gandhi, M. V., and Thompson, B., 1992, Smart materials and structures, Springer Science & Business Media.
- Calladine, C. R., 1989, Theory of shell structures, Cambridge University Press.
- Holmes, D. P., and Crosby, A. J., 2007, “Snapping surfaces,” Advanced Materials, 19(21), pp. 3589-3593.
- Tavakol, B., Bozlar, M., Punckt, C., Froehlicher, G., Stone, H. A., Aksay, I. A., and Holmes, D. P., 2014, “Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps,” Soft matter, 10(27), pp. 4789-4794.
- Taffetani, M., Jiang, X., Holmes, D. P., and Vella, D., 2018, “Static bistability of spherical caps,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2213), p. 20170910.
- Panter, J. R., Chen, J., Zhang, T., and Kusumaatmaja, H., 2019, “Harnessing energy landscape exploration to control the buckling of cylindrical shells,” Communications physics.
- Friedman, J. B., 1951, “Flexible drinking straw,” Google Patents.
- Harp, H. J., Leible, W. T., and Mccort, W. M., 1968, “Flexible drinking tube,” Google Patents.
- Bende, N. P., Yu, T., Corbin, N. A., Dias, M. A., Santangelo, C. D., Hanna, J. A., and Hayward, R. C., 2018, “Overcurvature induced multistability of linked conical frusta: how a ‘bendy straw’holds its shape,” Soft matter, 14(42), pp. 8636-8642.
- Ni, B., Zhang, T., Li, J., Li, X., and Gao, H., 2019, “Topological design of graphene,” Handbook of Graphene: Physics, Chemistry, and Biology, p. 1.
- Zhang, T., Li, X., and Gao, H., 2014, “Defects controlled wrinkling and topological design in graphene,” Journal of the Mechanics and Physics of Solids, 67, pp. 2-13.
- Zhang, T., Li, X., and Gao, H., 2014, “Designing graphene structures with controlled distributions of topological defects: A case study of toughness enhancement in graphene ruga,” Extreme Mechanics Letters, 1, pp. 3-8.
- Li, J., Ni, B., Zhang, T., and Gao, H., 2018, “Phase field crystal modeling of grain boundary structures and growth in polycrystalline graphene,” Journal of the Mechanics and Physics of Solids, 120, pp. 36-48.
- Elder, K. R., Provatas, N., Berry, J., Stefanovic, P., and Grant, M., 2007, “Phase-field crystal modeling and classical density functional theory of freezing,” Physical Review B, 75(6), p. 064107.
- Seymour, M., and Provatas, N., 2016, “Structural phase field crystal approach for modeling graphene and other two-dimensional structures,” Physical Review B, 93(3), p. 035447.
- Hoover, W. G., 1985, “Canonical dynamics: Equilibrium phase-space distributions,” Physical review A, 31(3), p. 1695.
- Yazyev, O. V., and Louie, S. G., 2010, “Topological defects in graphene: Dislocations and grain boundaries,” Physical Review B, 81(19), p. 195420.
- Filleter, T., McChesney, J. L., Bostwick, A., Rotenberg, E., Emtsev, K. V., Seyller, T., Horn, K., and Bennewitz, R., 2009, “Friction and dissipation in epitaxial graphene films,” Physical review letters, 102(8), p. 086102.
- Rogers, R. C., and Truskinovsky, L., 1997, “Discretization and hysteresis,” Physica B: Condensed Matter, 233(4), pp. 370-375.
- Benichou, I., and Givli, S., 2011, “The hidden ingenuity in titin structure,” Applied Physics Letters, 98(9), p. 091904.
- Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E., 1997, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” science, 276(5315), pp. 1109-1112.
- Fraternali, F., Blesgen, T., Amendola, A., and Daraio, C., 2011, “Multiscale mass-spring models of carbon nanotube foams,” Journal of the Mechanics and Physics of Solids, 59(1), pp. 89-102.
- Benichou, I., and Givli, S., 2013, “Structures undergoing discrete phase transformation,” Journal of the Mechanics and Physics of Solids, 61(1), pp. 94-113.
- Wei, Y., Wang, B., Wu, J., Yang, R., and Dunn, M. L., 2012, “Bending rigidity and Gaussian bending stiffness of single-layered graphene,” Nano letters, 13(1), pp. 26-30.
- Florijn, B., Coulais, C., and van Hecke, M., 2014, “Programmable mechanical metamaterials,” Physical review letters, 113(17), p. 175503.
- Plimpton, S., 1995, “Fast parallel algorithms for short-range molecular dynamics,” Journal of computational physics, 117(1), pp. 1-19.
- Stukowski, A., 2009, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modelling and Simulation in Materials Science and Engineering, 18(1), p. 015012.
- Stuart, S. J., Tutein, A. B., and Harrison, J. A., 2000, “A reactive potential for hydrocarbons with intermolecular interactions,” The Journal of chemical physics, 112(14), pp. 6472-6486.
- Terdalkar, S. S., Huang, S., Yuan, H., Rencis, J. J., Zhu, T., and Zhang, S., 2010, “Nanoscale fracture in graphene,” Chemical Physics Letters, 494(4-6), pp. 218-222.